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Abstract. Landscape evolution models often utilize the stream power incision model to simulate river incision: E=KAmSn, 

where E = vertical incision rate, K = erodibility constant, A = upstream drainage area, S = channel gradient, and m and n are 

exponents. This simple but useful law has been employed with an imposed rock uplift rate to gain insight into steady-state 

landscapes. The most common choice of exponents satisfies m/n = 0.5; indeed, this ratio has been deemed to yield the “optimal 10 

channel network.” Yet all models have limitations. Here, we show that when hillslope diffusion (which operates only at small 

scales) is neglected, the choice m/n = 0.5 yields a curiously unrealistic result: the predicted landscape is invariant to horizontal 

stretching. That is, the steady-state landscape for a 1 m2 horizontal domain can be stretched so that it is identical to the 

corresponding landscape for a 100 km2 domain. 

1 Introduction 15 

The stream power incision model (SPIM) (e.g., Howard, 1994; Howard et al., 1994) is a commonly-used physically-based 

model for bedrock incision. The incision rate, E, can be written as 

𝐸 = 𝐾𝐴𝑚𝑆𝑛 (1) 

where K = erodibility coefficient, A = upslope drainage area, S = downstream slope, and m and n are exponents. This simple 

model is thoroughly reviewed in Whipple and Tucker (1999) and Lague (2014), where they hypothesize that m/n is between 20 

0.35 and 0.60. This range is consistent with results inferred from field work and map studies (Flint, 1974; Howard and Kerby, 

1983; Tarboton et al., 1989; Willgoose et al., 1990; Tarboton et al., 1991; Willgoose, 1994; Moglen and Bras, 1995; Snyder et 

al., 2000; Banavar et al., 2001). Furthermore, researchers specifically suggest that the ratio, m/n ~ 0.5 (Snyder et al., 2000; 

Banavar et al., 2001). The choice of this ratio is paramount in numerical Landscape Evolution Models (LEMs) that utilize 

SPIM, such as the channel-hillslope integrated landscape development model, CHILD (Tucker et al., 2001). The ratio, m/n, is 25 

also used to describe the relationship between slope and drainage area in describing stream long profiles (Flint, 1974). All 

models using SPIM, including studies on drainage reorganization and stability (Willett et al., 2014), tectonic histories of 

landscapes (Goren et al., 2014b; Fox et al., 2014), and persistent drainage migration (Pelletier, 2004), involve specification of 

this ratio. In addition, the specific values of m and n are important (Tucker and Whipple, 2002). Here, however, we focus on 
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the ratio itself. In their research on optimal channel networks, Rodriguez-Iturbe and Rinaldo (2001) hypothesize that a 

landscape’s drainage network organizes itself into an optimal state which minimizes the rate of energy dissipation. Their 

definition of optimality requires that m/n = 0.5. Here, however, we show a somewhat unexpected result: when m/n = 0.5, 

SPIM-based LEMs exhibit elevation solutions that are invariant to shape-preserving stretching of horizontal domain. That is, 

except for the finest scales at which hillslope diffusion becomes important, the model predicts the same solution for a landscape 5 

with a total basin area of 1 m2 and one with a total basin area of 100 km2 under the constraint of identical horizontal basin 

shape (e.g. square). The validity of SPIM at the meter scale should not be expected, but the extremity of this result underscores 

a heretofore unrecognized unrealistic aspect of SPIM. 

 

In this paper, we perform a scaling analysis of SPIM. First, we use a 1D model to analytically derive steady-state river profiles, 10 

to illustrate the problem of scale invariance, and to delineate conditions for which elevation singularities occur at the ridge. 

Then, using a 2D numerical model, we demonstrate the effects of horizontal scale on the steady-state relief of landscapes and 

infer the conditions for which elevation singularities occur at ridges. 

2 Motivation 

SPIM is a simple model that has been used to gain considerable insight into landscape evolution. Previous studies using SPIM 15 

have shown how landscapes respond to tectonic and climate forcing (e.g., Howard, 1994; Howard et al., 1994). Yet like most 

simple models, SPIM is in some sense an oversimplification. Here we demonstrate this by showing that it satisfies a curiously 

unrealistic scale invariance relation. By demonstrating this limitation, we hope to motivate the formulation of models that 

overcomes it. 

 20 

The fundamental limitation on SPIM becomes apparent when the ratio, m/n = 0.5. Under this condition, a SPIM will predict 

the same steady-state relief for a 1 m2 domain as a 100 km2 domain of the same horizontal shape, as illustrated below. LEMs 

utilizing SPIM often sidestep this problem with the use of a “hillslope diffusion” coefficient (Passalacqua et al., 2006), a useful 

but rather poorly-constrained parameter that lumps together a wide range of processes (Fernandes and Dietrich, 1997). 

Alternatively, the problem can be sidestepped with an externally specified “hillslope critical length” (Goren et al., 2014a) that 25 

essentially specifies the location of channel heads. For example, the model simulations of Willett et al. (2014) employ the 

specific value of 500 m for hillslope critical length in their characterization of tendencies for drainage divide migration. The 

prediction of the hillslope diffusion coefficient and the location of channels are outstanding problems in the field of 

geomorphology (Montgomery and Dietrich, 1988). The intrinsic nature of the SPIM model, however, is such that scale 

invariance persists for the case m/n = 0.5 at scales larger than a characteristic hillslope length scale, whether it be externally 30 

specified or computed from a diffusion coefficient. 
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The existence of scale invariance exemplifies an unrealistic aspect of SPIM, which we believe to be associated with its 

omission of natural processes, such as abrasion due to sediment transport. Gilbert (1877) theorized two roles that sediment 

moving as bedload could play in bedrock incision, the first as an abrasive agent that incises the bed via collisions and the 

second as a protector that inhibits collisions of bedload on the bed. These observations have been implemented quantitatively 

by many modelers (e.g., Sklar and Dietrich, 2001, Sklar and Dietrich, 2004; Sklar and Dietrich, 2006; Lamb et al., 2008; Zhang 5 

et al., 2015), some of whom have implemented them in LEMs (e.g. Gasparini et al., 2006, Gasparini et al., 2007). Here we 

shed light on an unrealistic behavior of SPIM with the goal of motivating the landscape evolution community to develop more 

advanced treatments that better capture the underlying physics. A further goal is to emphasize the importance of scaling and 

non-dimensionalization in characterizing LEMs. 

3 1D model: scale invariance and singularities  10 

A LEM can be implemented using the following equation of mass conservation for rock/regolith subject to uplift and 

denudation: 

𝜕𝜂 𝜕𝑡⁄ = 𝜐 − 𝐸 − 𝐷𝛻2𝜂  (2) 

where η = local landscape elevation, t = time, υ = rock uplift rate and D = hillslope diffusion coefficient. The term, 𝐷𝛻2𝜂, 

accounts for hillslope diffusion (Somfai and Sander, 1997; Banavar et al., 2001). The effect of diffusion is commonly neglected 15 

at coarse-grained resolution (Somfai and Sander, 1997; Banavar et al., 2001; Passalacqua et al., 2006), at which any resolved 

channels can be taken to be fluvially-dominated bedrock channels (Montgomery and Foufoula-Georgiou,1993). In our 

analysis, we use Eq. (1) to specify the incision term in Eq. (2). It should be noted that SPIM refers to the incision in the direction 

normal to the bed, implying that there are both horizontal and vertical components of incision. In much of the literature using 

SPIM, however, the horizontal component is neglected in accordance with the original formulation of Howard and Kerby 20 

(1983), and incision is assumed to be purely vertical downward: Here we preserve this simplification in order to better 

understand the overall behavior of SPIM. 

 

Equation (2) characterizes landscape evolution in 2D; i.e. elevation   = (x,y), where x and y are horizontal coordinates. It is 

useful for some purposes, however, to simplify Eq. (2) into a 1D form. Neglecting hillslope diffusion, the 1D conservation 25 

equation is 

𝜕𝜂 𝜕𝑡⁄ = 𝜐 − 𝐾𝐴𝑚(− 𝜕𝜂 𝜕𝑙⁄ )𝑛   (3) 

where l = horizontal stream distance from the ridge, at which l = 0. It should be noted that the negative sign appears front of 

the term 𝜕𝜂 𝜕𝑙⁄  because 𝜕𝜂 𝜕𝑙⁄  is negative in the downstream direction, so that streambed slope, 𝑆 = − 𝜕𝜂 𝜕𝑙⁄ . In SPIM, slope 

S is assumed to be positive. In order to solve Eq. (3), a relationship between A and l must be established. Here we assume a 30 

generalized form of Hack’s Law (Hack, 1957); 

𝐴 = 𝐶𝑙ℎ  (4) 
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where C and h are positive values. Hack’s Law assumes that upslope area increases with lh. From empirical data, Hack found 

the exponent, h, to be ~1.67 (Hack, 1957).  

 

Previous researchers have presented 1D analytical solutions for elevation profiles (Chase, 1992; Beaumont et al., 1992, 

Anderson, 1994; Kooi and Beaumont, 1994; Tucker and Slingerland, 1994; Kooi and Beaumont, 1996; Densmore et al., 1998; 5 

Willett, 1999; Whipple and Tucker, 1999; Willett, 2010). In their solutions, the effect of the horizontal scale, which in the 1D 

model we define as the total length of the stream profile, L1D, was neither shown nor discussed. Previous studies that use Eq. 

(4) (Whipple and Tucker, 1999; Willett, 2010) involve nondimensionalization of both the horizontal and vertical coordinates 

by the total horizontal length of the profile, L1D. This step obscures the effect of the horizontal scale on the relief of the profile. 

In our study, we nondimensionalize the vertical coordinate, η, by a combination of υ and the acceleration of gravity, g. Our 10 

nondimensionalization of the coordinates is shown below. 

𝜂 = 𝜐2𝑔−1𝜂̂ 𝑡 = 𝜐𝑔−1𝑡̂ 𝑙 = 𝐿1𝐷𝑙  (5) 

Substituting Eq. (4) and Eq. (5) into Eq. (3) results in the following dimensionless conservation equation: 

𝜕𝜂̂ 𝜕𝑡̂⁄ = 1 − 𝑃1𝐷
−𝑛𝑙ℎ𝑚(− 𝜕𝜂̂ 𝜕𝑙⁄ )

𝑛
  (6) 

where the dimensionless number P1D, termed the 1D Pillsbury number herein for convenience, is given by the relation 15 

𝑃1𝐷 = 𝐾−1 𝑛⁄ 𝐶−𝑚 𝑛⁄ 𝐿1𝐷
1−ℎ𝑚 𝑛⁄

𝜐1 𝑛⁄ −2𝑔  (7) 

At steady-state, Eq. (6) becomes  

𝑃1𝐷 = 𝑙ℎ𝑚 𝑛⁄ (− 𝜕𝜂̂ 𝜕𝑙⁄ ) (8) 

From this equation, we see as we approach the ridge, i.e 𝑙 → 0, the slope term (− 𝜕𝜂̂ 𝜕𝑙⁄ ) always approaches infinity for 

positive values of h, m, and n. 20 

 

The value of the 1D Pillsbury number P1D increases with stream profile length, L1D, when hm/n < 1, is invariant to changes in 

L1D when hm/n = 1, and decreases with L1D when hm/n > 1. This can be further illustrated by integrating Eq. (8). To solve this 

first order differential equation, we need to specify a single boundary condition, shown below. 

𝜂̂|𝑙=1 = 0  (9) 25 

This boundary condition sets the location and elevation of the outlet, where flow is allowed to exit the system. Integrating Eq. 

(8) yields 

𝜂̂ = {
−𝑃1𝐷ln(𝑙) if ℎ𝑚 = 𝑛

(1 − ℎ𝑚 𝑛⁄ )−1𝑃1𝐷(1 − 𝑙1−ℎ𝑚 𝑛⁄ ) if ℎ𝑚 ≠ 𝑛
   (10) 

The steady-state profiles defined by Eq. (10) are shown in Fig. 1. Inspecting Eq. (10), we see that elevation is infinite at the 

ridge (l = 0) when hm/n ≥ 1, and elevation is finite when hm/n < 1. In addition, when hm/n = 1, P1D, shown in Eq. (7), is no 30 

longer dependent on the horizontal scale, L1D, and 𝜂̂ is independent of the scale of the basin. Using the empirical value from 
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Hack’s original work (1957), i.e. h = 1.67, the ratio, m/n, must take the value 0.6 for scale invariance. This ratio is within the 

range reported in the literature (Whipple and Tucker, 1999). 

4 2D model: scale invariance 

In 2D, the conservation equation using SPIM and neglecting hillslope diffusion can be written as 

𝜕𝜂 𝜕𝑡⁄ = 𝜐 − 𝐾𝐴𝑚[(𝜕𝜂 𝜕𝑥⁄ )2 + (𝜕𝜂 𝜕𝑦⁄ )2]𝑛 2⁄  (11) 5 

To understand the behavior of Eq. (11) in response to scale, we need to use a dimensionless formulation in a fashion similar 

to the previous 1D analysis. Here, L2D denotes the horizontal length of the entire domain, which is taken to be square for 

convenience. For the 2D analysis, our nondimensionalization is 

𝜂 = 𝜐2𝑔−1𝜂̂ 𝑡 = 𝜐𝑔−1𝑡̂ 𝐴 = 𝐿2𝐷
2 𝐴̂ 𝑥 = 𝐿2𝐷𝑥̂ 𝑦 = 𝐿2𝐷𝑦̂   (12) 

The form of Eq. (11) in which x, y, and A have been made dimensionless using the definitions shown in Eq. (12) is 10 

𝜕𝜂̂ 𝜕𝑡̂⁄ = 1 − 𝑃2𝐷
−𝑛𝐴̂𝑚[(𝜕𝜂̂ 𝜕𝑥̂⁄ )2 + (𝜕𝜂̂ 𝜕𝑦̂⁄ )2]𝑛 2⁄   (13) 

where the dimensionless number P2D, termed the 2D Pillsbury number is given as 

𝑃2𝐷 = 𝐾−1 𝑛⁄ 𝐿2𝐷
1−2𝑚 𝑛⁄

𝜐1 𝑛⁄ −2𝑔   (14) 

At steady-state, Eq. (13) becomes 

𝑃2𝐷 = 𝐴̂𝑚 𝑛⁄ [(𝜕𝜂̂ 𝜕𝑥̂⁄ )2 + (𝜕𝜂̂ 𝜕𝑦̂⁄ )2]1 2⁄   (15) 15 

The form of the parameter P2D specified by Eq. (14) is similar to the 1D form, Eq. (7), but different due to the different 

dimensionality. The parameter, P2D, scales with the relief of the landscape; as it increases, the slope term on the RHS of Eq. 

(15) also increases. The value of P2D increases with L2D for m/n < 0.5, remains constant with L2D for m/n = 0.5, and decreases 

with L2D for m/n > 0.5. For the ratio, m/n = 0.5, the exponent above L2D in Eq. (14) becomes zero, and the relief of the landscape 

becomes invariant to horizontal scale. When m/n = 0.5, the same steady-state solution to Eq. (15) prevails regardless of the 20 

value of L2D. 

 

Our 2D model was solved using the following boundary conditions: 

𝜂|𝑦=0 = 0  (16) 

𝜕𝜂 𝜕𝑦⁄ |𝑦=𝐿2𝐷
= 0  (17) 25 

𝜂|𝑥=0 = 𝜂|𝑥=2𝐷  (18) 

The bottom (outlet) side of the domain presented herein Fig. 2 is fixed at the base level η = 0 m, corresponding to an open 

boundary where flow can exit the system while satisfying Eq. (16). The top side of the domain is designated as an impermeable 

boundary to flow, i.e. the drainage divide satisfies Eq. (17). Periodic boundary conditions satisfying Eq. (18) are applied at the 

left and right boundaries. Flow, slope, and drainage area are determined using the D8 flow algorithm, where flow follows the 30 
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route of steepest descent (O’Callaghan and Mark, 1984). The initial condition is a gently-sloped plane oriented towards the 

outlet with small random perturbations. 

 

For the results of Fig. 2, we used regular grids that contained 1002 cells. The number of cells was constant, regardless of the 

value of L2D. This is in contrast to making cell size constant, and increasing the number of cells with L2D. We argue that the 5 

former shows the fundamental numerical behavior of SPIM, while the latter obscures the behavior due to the existence of slope 

and elevation singularities near the ridges in the landscape. The next sections show this singular behavior in the 2D numerical 

model. 

 

Figure 2a shows steady-state solutions for m/n = 0.5 and two values of L2D using the same initial condition. At each 10 

corresponding grid cell between the two solutions, the slope, S, decreases as L2D increases. However, the relief structures of 

each landscape are identical. By relief structure, we are describing the elevation value at each corresponding grid cell in the 

two steady-state solutions. This is confirmed by nondimensionalizing the horizontal scale of landscape without adjusting the 

vertical scale (Fig. 2b). Using the same numerical methods and the parameters from Fig. 2a, the results of a similar analysis 

using different ratios m/n = 0.4, 0.5, and 0.6 are shown in Fig. 2c.  15 

 

In Fig. 2c, the case of scale invariance can be seen when m/n = 0.5. For m/n = 0.4, the relief of the entire landscape increases 

with increasing L2D, and for m/n = 0.6, the relief decreases with increasing L2D. When m/n ≠ 0.5, the landscapes do not exhibit 

scale invariance. However, the overall planform drainage network structure shows resemblance across scales. That is, the 

location of the major streams and rivers in the numerical grid are similarly organized. It should be noted that the landscapes 20 

are not identical. When the landscapes are shown in dimensional space, as shown in Fig. 2a, the landscapes appear to be quite 

different. In the case of Fig. 2b, however, the smaller landscape can be stretched horizontally to be identical to the large one. 

The drainage network structure described above persists in each simulation due to the imprinting of the initial condition, which 

always consists of the same randomized perturbations. 

5 2D model: quasi-theoretical analysis of singular behavior 25 

Like the 1D model, Eq. (8), the 2D model, Eq. (15), has slope, S, approaching infinity as area, A, approaches zero at steady 

state. In contrast to the 1D model, however, general steady-state solutions for elevation in the 2D model, Eq. (15), cannot be 

determined analytically. However, the ratio, m/n, for which elevation singularities occur can be determined by analyzing the 

behavior of the 2D numerical model in close proximity to a ridge. Here, we first develop a quasi-theoretical treatment to study 

near-ridge behavior, which we then use to infer singular behavior in the numerical model. Converting the coordinate system 30 

from Cartesian to a system that follows the streamwise direction, we rewrite Eq. (11) as 

𝜕𝜂 𝜕𝑡⁄ = 𝜐 − 𝐾𝐴𝑚(− 𝜕𝜂 𝜕𝑠⁄ )𝑛  (19) 
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where s = distance along the path of steepest descent away from the ridge. From dimensional considerations, A [L2] must scale 

with s2 [L2] near the ridge (s = 0), and therefore, 

𝐴 = 𝛽𝑠2 𝑎𝑠 𝑠 → 0  (20) 

where β = scaling factor. For this analysis, our nondimensionalization is 

𝜂 = 𝜐2𝑔−1𝜂̂ 𝑡 = 𝜐𝑔−1𝑡̂ 𝑠 = 𝐿𝑅 𝑠̂  (21) 5 

where LR = horizontal ridge scale. Near the ridge, Eq. (19) can be nondimensionalized into: 

𝜕𝜂̂ 𝜕𝑡̂⁄ = 1 − 𝑃𝑅
−𝑛𝑠̂2𝑚(− 𝜕𝜂̂ 𝜕𝑠̂⁄ )𝑛   (22) 

where PR is another dimensionless Pillsbury number, here denoted as 

𝑃𝑅 = 𝐾−1 𝑛⁄ 𝛽−𝑚 𝑛⁄ 𝐿1𝐷
1−2𝑚 𝑛⁄

𝜐1 𝑛⁄ −2𝑔   (23) 

At steady-state (∂η/∂t = 0), Eq. (22) becomes 10 

𝑃𝑅 = 𝑠̂2𝑚 𝑛⁄ (− 𝜕𝜂̂ 𝜕𝑠̂⁄ ) (24) 

From Eq. (24), we see that at the ridge (𝑠̂ = 0), there is a singularity in slope, i.e. the slope, (− 𝜕𝜂̂ 𝜕𝑠̂⁄ ), goes to infinity. 

Integration of Eq. (24) using the downstream boundary condition, 𝜂̂|𝑠̂=1 = 0, allows for the delineation of the conditions for 

elevation singularities in the 2D model. The profile is given as 

𝜂̂ = {
−𝑃𝑅ln(𝑠̂) if 2𝑚 = 𝑛

(1 − 2𝑚 𝑛⁄ )−1𝑃𝑅(1 − 𝑠̂1−2𝑚 𝑛⁄ ) if 2𝑚 ≠ 𝑛
   (25) 15 

Instead of the elevation singularity occurring when hm/n ≥ 1 as seen in the 1D model, Eq. (10), this analysis for the 2D model 

shows an elevation singularity at the ridge when m/n ≥ 0.5. 

6 2D model: numerical analysis of singular behavior 

Our quasi-theoretical analysis infers the conditions for singular behavior in the 2D model. If elevation singularities exist, the 

model will not satisfy grid-invariance, causing the relief between the ridge and outlet to increase indefinitely as grid size 20 

decreases. In contrast, in simulations where singularities do not exist, the relief between the ridge and outlet can be expected 

to converge as the grid size decreases. In both cases, understanding ridge behavior in the 2D model requires studying solution 

behavior as grid size approaches zero. 

 

We do this by extracting river profiles from 13 landscape simulations of different scales for each value of m/n, i.e. 0.4, 0.5 and 25 

0.6. The largest simulation is for L2D
2 = 106 km2; simulations were also performed at progressively one order-or-magnitude 

less in area down to L2D
2 = 10-6 km2. The number of grid cells, M2, is held constant at 252. In each simulation, then, the closest 

distance to the ridge that can be resolved is one grid cell, given by 

∆𝑙𝑖 = 10(7−𝑖) 2⁄ 25⁄ [𝑘𝑚] 𝑖 = 1,2 … 13  (26) 

From each of the simulations, we construct two synthetic river profiles, one that intersects the highest point of the basin divide 30 

(high profile) and one that intersects the lowest point of the basin divide (low profile). The choice of these two elevations was 
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made so as to bracket the possible range of behavior; analogous results would be obtained from starting points along the basin 

divide at intermediate elevations. We use these synthetic profiles to characterize whether or not the numerical model is tending 

toward a singularity near ridges. We do this because the numerical model itself cannot directly capture singular behavior. We 

outline the details of the methodology for the high profile only, as the case of the low profile involves a transparent extension. 

 5 

The 13 simulations result in 13 elevation profiles i, where i = 1,2…13 each extending from Δli (i.e. one grid point from the 

divide) to a downstream value lDi that is somewhat larger that the value 103-(i/2) km (because the down-channel path of steepest 

descent does not follow a straight line.). We assemble a synthetic channel profile, S(l), from these as follows. The first leg of 

S(l) is identical to 1(l), and extends from l = Δl1 to lD1. We extend the synthetic profile by translating the second profile 

upward until its elevation at its downstream point lD2 matches with S(lD2), as shown in Fig. 3a. The profile, S(l), now extends 10 

from Δl2 to lD1. As shown in Fig. 3a, we repeat this process until all 13 profiles have been used to assemble the synthetic profile, 

which now extends from Δl13 to lD1. 

 

This procedure results in a high synthetic profile encompassing all thirteen profiles (circles) and in a low synthetic profile 

(crosses) (Fig. 3b). 1D analytical solutions, Eq. (10), are then fitted to the profiles of the 2D simulations using the 1D Pillsbury 15 

number, P1D, as a fitting parameter. To account for the difference in dimensionality, the 1D steady-state profiles with hm/n = 

0.8, 1.0, and 1.2 are fitted to the 2D data for m/n = 0.4, 0.5, and 0.6, respectively. The scatter in the synthetic profile is due to 

the randomness in the pathway, as dictated by the initial conditions. 

 

Figure 3b shows good fit between the 2D results and the corresponding 1D steady-state profiles. This allows us to make 20 

inferences concerning asymptotic behavior at a ridge. The analytical curves for elevation that best fit the 2D data for m/n < 0.5 

converge to finite values as l approaches 0 and infinity for m/n ≥ 0.5. While these results do not constitute analytical proof of 

this asymptotic behavior, they provide strong evidence for it. 

7 Discussion and conclusion 

The 1D analytical solutions, Eq. (10) and Fig. 1, characterize the scale behavior of the SPIM, where there is scale invariance 25 

when hm/n = 1.0. In addition, the 2D numerical solution shown in Fig. 2 confirms the existence of the condition of scale 

invariance when m/n = 0.5. Models using SPIM with m/n = 0.5 show the same relief structure regardless of the horizontal 

scale. Scale invariance of both the 1D and 2D models have not previously been demonstrated. This result calls into question 

the assertion that the ratio m/n = 0.5, which is the most commonly used ratio in landscape evolution models (e.g. Gasparini et 

al., 2006), represents an “optimal” value for a channel network (Rodriguez-Iturbe and Rinaldo, 2001). It also motivates further 30 

investigation as to why analysis of field data yields values of m/n ~ 0.5 (Snyder et al., 2000; Banavar et al., 2001).  
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The numerical solutions of the 2D model allows inference that the 2D model cannot be grid-invariant for m/n ≥ 0.5. In the 

absence of hillslope diffusion, ridges reach infinite elevation as grid size becomes vanishingly small. This result underlines the 

critical role of hillslope diffusion in obtaining meaningful results from the 2D model. Field estimates of hillslope diffusion 

have been obtained at the hillslope scale, but there are unanswered questions about their application in large-scale models 

(Fernandes and Dietrich, 1997). Our results suggest for the ratio, m/n < 0.5, there are steady-state grid-invariant solutions. 5 

However, the grid size below which grid-invariance is realized may be so small, e.g. sub-meter scale, that the validity of Eq. 

(1) is called into question. Issues with SPIM when used at large scale include the following. Studies commonly neglect the 

effect of hillslope diffusion when the scale of the grid is larger than the hillslope scale (Somfai and Sander, 1997; Banavar et 

al., 2001; Passalacqua et al., 2006). At coarse-grained scales, increasing the size of the numerical domain, while keeping the 

number of cells constant, will result in the behavior that shown in Fig. 2. That is, when m/n ≥ 0.5, adding more cells to 10 

compensate for the size of the domain so that the grid size remains constant produces heavily biased (ever more singular) 

behavior near the ridges that does not represent the fundamental behavior of SPIM.  

 

Our analysis illustrates that SPIM has two important limitations; a) unrealistic scale invariance when m/n takes the commonly-

used value 0.5, so that a 1 m2 basin has identical relief to a 100 km2 basin, and b) singular behavior near the ridges for m/n  15 

0.5 that makes maximum relief entirely and unrealistically dependent on grid size. SPIM has been used with much success to 

study the general behavior of landscapes (e.g., Howard, 1994; Howard et al., 1994). We believe, however, that the time has 

come to move on to more sophisticated models. While scientific questions remain that can be answered with the stream power 

incision model, there are many more questions that require a more advanced formulation (e.g., Crosby et al., 2007). The 

development of alternative, more physically-based models for incision (e.g. Sklar and Dietrich, 2004; Lague, 2014; Zhang et 20 

al., 2015) and their application to landscape evolution (e.g. Davy and Lague, 2009; Gasparini et al., 2006, 2007) offer exciting 

prospects for the future. 

8 Notation 

𝐴  upslope drainage area [L2] 

𝐵  profile width [L]  25 

𝐶  Hack’s law constant [L2-h] 

𝐷  hillslope diffusion coefficient [L2/T] 

𝐸  local erosion rate [L/T] 

𝑔  acceleration of gravity [L/T2] 

ℎ   Hack’s law exponent [-] 30 

𝐾  erodibility coefficient [L(1-2m)/T] 

𝑖  index denoting the profile, 1,2…13 [-] 
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𝑙  horizontal distance from the ridge in the 1D profile [L] 

𝑙 dimensionless horizontal distance from the ridge in the 1D profile, 𝑙 𝐿1𝐷⁄  [-] 

𝑙𝐷𝑖 total length of profile, i [L] 

𝑙𝑖 horizontal distance from the ridge of profile, i [L] 

𝐿1𝐷  horizontal length scale, profile length [L]  5 

𝐿2𝐷  horizontal length scale, basin size [L] 

𝐿𝑅   horizontal length scale, ridge [L] 

𝑚  exponent above A in SPIM [-] 

𝑀2 number of numerical cells [cells2] 

𝑛  exponent above S in SPIM [-] 10 

𝑃1𝐷 Pillsbury number for the 1D analysis [-] 

𝑃2𝐷 Pillsbury number for the 2D analysis [-] 

𝑃𝑅 Pillsbury number for the 2D ridge analysis [-] 

𝑠 distance from the ridge [L] 

𝑠̂ dimensionless distance from the ridge, 𝑠 𝐿𝑅⁄  [-] 15 

𝑆 stream gradient [-] 

𝑡 time [T]  

𝑡̂ dimensionless time, 𝑡𝑔 𝜐⁄  [-] 

𝑥 horizontal coordinate orthogonal to y [L] 

𝑥̂ dimensionless horizontal coordinate, 𝑥 𝐿2𝐷⁄  [-]  20 

y horizontal coordinate orthogonal to x [L] 

𝑦̂ dimensionless horizontal coordinate, 𝑦 𝐿2𝐷⁄  [-] 

𝛽 ridge scaling constant [-] 

∆𝑙𝑖 grid size for profile, i [L] 

𝜂 elevation [L] 25 

𝜂̂ dimensionless elevation, 𝜂𝑔 𝜐2⁄  [-] 

𝜂𝑖 elevation of profile, i [L] 

𝜂𝑆 elevation of synthetic profile [L] 

𝜐 uplift rate [L/T] 
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Figure 1: 1D analytical dimensionless solutions for elevation profiles at steady-state equilibrium over a range of ratios hm/n (Hack’s 15 
Law) =0.7, 0.8, 0.9, 1.0, 1.1, and 1.2 and P1D = 1.0. 
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Figure 2: (a) 2D numerical landscapes at steady-state using a ratio of m/n = 0.5, n = 1.0, υ = 4 mm/yr, K = 2.83x10-11 s-1, M2 = 1002 

cells, and L2D
2 = 125 km2 and 2000 km2. For each case, the 2D Pillsbury number was the same, 2.73x1021. (b) Results of (a) expressed 

in terms of dimensionless horizontal scale. Each basin is made dimensionless by its basin size, L2D. (c) Nine 2D numerical simulations 

at dynamic equilibrium for three different values of L2D, and three different values of m/n. The value of K has been chosen to be 5 
different for each value of m/n for clarity in the figures. From left to right, the L2D

2 = 5x102 km2, 5x104 km2, and 5x106 km2. To make 

the relief of the landscapes comparable, the 2D Pillsbury number, P2D, is set to 2.73x1021 for solutions of all m/n ratios with L2D
2 = 

5x102 km2. To achieve this for υ = 4 mm/yr, K = 2.10x10-10 m0.2/s, 2.83x10-11 s-1, and 3.82x10-12 m-0.2/s for m/n = 0.4, 0.5, and 0.6, 

respectively. 
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Figure 3: (a) Construction of the synthetic profile, S(l). The opaque points represent the synthetic profile, and the transparent 

points represent the untranslated profiles. The green points represent the profile for i = 1, blue represent i = 2, and red represent i 

= 3. After 13(l) has been utilized in S(l), the synthetic profile is complete. (b) 1D steady-state equilibrium analytical solutions fitted 

to 2D numerical results using P1D. Each m/n ratio contains two profiles, one generated from a flow path from the highest point on 5 
the ridge corresponding to the basin divide (HP) and one from the lowest point on the basin divide (LP). The circles (HP) and crosses 

(LP) represent the 2D model data, and the red (HP) and blue (LP) line represent the 1D analytical model. For each m/n ratio, υ = 3 

mm/yr, M2 = 252 cells, n = 1.0, and L2D
2 = 10-6 km2 to 106 km2. (I) Using K = 5.00x10-12 m0.2/s, m/n = 0.4 (2D), and hm/n = 0.8 (1D), P1D 

= 6.45x1021 (LP) and P1D = 7.89x1021 (HP). (II) Using K = 2.83x10-11 s-1, m/n = 0.5 (2D), and hm/n = 1.0 (1D), P1D = 5.79x1021 (LP) and 

P1D = 6.47x1021 (HP). (III) Using K = 3.82x10-12 m-0.2/s, m/n = 0.6 (2D), and hm/n = 1.2 (1D), P1D = 2.13x1023 (LP) and P1D = 2.15x1023 10 
(HP). 

 

 

Earth Surf. Dynam. Discuss., doi:10.5194/esurf-2017-15, 2017
Manuscript under review for journal Earth Surf. Dynam.
Discussion started: 20 March 2017
c© Author(s) 2017. CC-BY 3.0 License.


